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One particularly efficient approach to making emulsions having monosized droplets is to push a fluid

through an orifice into a transverse flow of a second immiscible fluid. We find that, at an intermediate

particle Reynolds number, the final droplet size can be readily computed using a simple force balance.

Remarkably like the well-known dripping faucet, this system displays both dripping and jetting behavior,

controlled by the capillary, Weber and Ohnesorge numbers of the relevant fluids, and interesting nonlinear

behavior such as period doubling near the transition between these two regimes.
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Drop formation and breakup have long been an object
of interest due to the surprising complexity of the phe-
nomena [1]. Breakup occurs either by an external force
tearing a growing drop from an orifice, as in the dripping
faucet, or at higher flow rates, by the breakup of a jet
emerging from the orifice, as in the Rayleigh instability
[2]. Near the transition between dripping and jetting, drop
formation shows interesting nonlinear dynamics, including
period doubling and chaos [3,4]. More recent studies have
probed drop formation in several microfluidic geometries,
such as coaxial flow [5,6] and T junctions [7], where
controlled droplet formation is an important technological
problem.

Here we study droplet formation in a cross-flow mem-
brane emulsification (XME) geometry, a high-throughput
method for generating monodisperse droplets [8–10]. In
XME, the dispersed phase (DP) is forced through an orifice
in a planar membrane into a simple shear flow set up by a
second continuous phase (CP) flowing parallel to the mem-
brane surface; see Fig. 1(a). In the dripping regime, when
buoyancy forces are negligible [11], the final droplet di-
ameter D results from the competition between hydrody-
namic stresses proportional to the CP shear rate dv

dz and

forces from the interfacial tension �. This leads us to
introduce the capillary number, which is a ratio of a drag
force�CP

dv
dz D

2
0 and an interfacial tension force �D0: Ca ¼

�CP
dv
dz D0=�, where � is the viscosity and D0 the orifice

diameter. At high DP flow rates, the inertial force of the
fluid emerging from the orifice �DPQ

2
DP=D

2
0 exceeds the

interfacial tension force, leading to a transition to jetting
behavior, where Q is the volumetric flow rate and � the
mass density. The ratio of these forces is the Weber num-
ber: We ¼ �DPQ

2
DP=D

3
0�. We find that the droplet size in

the dripping regime scales with the applied forces in a
manner different from those in the dripping faucet and
coaxial flow geometries but that the transition between
dripping and jetting is remarkably similar. This latter point
is more surprising given the lack of axial symmetry in our
system.

Our experimental apparatus consists of a long rectangu-
lar channel with height H ¼ 3:2 mm and width W ¼
6:4 mm through which the CP flows. The DP is forced
through a single circular pore (D0 ¼ 15, 90, or 132 �m)
on the center line of the bottom wall, using a syringe pump.
Drop formation is monitored from the side, with a viewing
angle 7� above the membrane plane, using a long-working
distance video microscope. A pair of right angle prisms
straddling the channel redirects illumination and viewing
light through a window at the top of the channel. Several
fluids were used for the DP, listed in Table I, while the CP
was limited to water, sometimes with poly(vinyl alcohol)
(PVA) as a surfactant. For each system studied, the two
fluids were equilibrated in contact, so as to minimize mass
transfer during the experiment. The densities �CP and �DP,
viscosities �CP and �DP, and interfacial tension � for each
equilibrated combination were measured directly by mass,
capillary viscometry, and pendant drop profilometry [13],
respectively (cf. Table I).
The qualitative features of the dripping and jetting be-

havior in XME are shown by the images in Fig. 1, taken at a
constant Ca. At low Weber number We ¼ 0:5, simple
dripping is observed [Figs. 1(b)–1(d)]. Because the inter-
facial force is dominant, the droplet is able to grow repro-
ducibly each cycle until detached by the flowing CP. At
We ¼ 1:1, the location of droplet snap-off moves away
from the orifice, but the size of the resultant droplet re-
mains roughly the same [Figs. 1(e)–1(g)]. The momentum
of the flowing DP distends the droplet neck noticeably; for
these parameters, the distended neck also snaps off repro-
ducibly to form a satellite droplet. Increasing the DP flow
rate further by 20%,We ¼ 1:6, causes further extension of
the droplet neck, with multiple peaks and nodes observed,
and a noticeable decrease in droplet size [Figs. 1(h)–1(j)].
An additional 10% increase in QDP, We ¼ 2:0, leads to a
stable bifurcation of the resultant droplet size, where the
elongated neck or jet alternates production of small and
large droplets [Figs. 1(k)–1(m)]. These and more complex
nonlinear dynamical behavior (not shown) were observed

PRL 102, 194501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
15 MAY 2009

0031-9007=09=102(19)=194501(4) 194501-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.194501


near the transition, over the entire range of different Ca we
studied.

Given the interest in using XME to produce monodis-
perse emulsions, we first seek to understand the particle
size in the dripping regime (i.e., low We), as a function of
the hydrodynamic stress due to the shear flow; typical data
are shown in Fig. 2(a). For all systems studied, the droplet

diameter scales as D / dv
dz

�1=2. This square root depen-

dence has a simple physical origin. In our geometry, the
mean velocity of the fluid at the drop center is itself
proportional to the droplet size, as larger droplets poke
up higher to impinge on faster flows, leading the hydro-
dynamic stress to depend quadratically on the droplet
diameter. Equating that hydrodynamic stress with a con-
stant, maximal interfacial tension at snap-off trivially
yields the desired scaling exponent.

To make such a force-balance relation more precise, we
begin by equating the drag force Fd with the interfacial
tension force F� at the moment of snap-off:

Fd ¼ �

8
Cd�CPv

21D2 ¼ F� ¼ �D0�; (1)

where v1 is the far-field velocity at the droplet midline and
Cd ¼ CdðRep; �Þ is the drag coefficient for a spherical

droplet with particle Reynolds number Rep ¼
�CPv1D=�CP and viscosity ratio � ¼ �DP=�CP.

TABLE I. Liquids used and their physical properties at 18 �C.
Mixture proportions are given in w=w. Small, medium, and large
symbols represent a D0 of 15, 90, or 132 �m, respectively.

Dispersed phase

(surfactant)

�DP

(kg=m3)

�DP

(mPa s)

�
(mN=m) Symbol

n-butanol 827 3.31 2.4 e

n-pentanol 817 3.61 4.8 h

n-hexanol 809 5.06 6.3 �
DCMa þhexanol 20=80 871 3.12 7.5 �
DCMþ hexanol 40=60 943 1.79 9.7 �
DCMþ hexanol 60=40 1039 1.14 9.1 �
DCM (0.05% PVA) 1320 0.44 12.0 4
DCM (0.5% PVA) 1320 0.44 6.1 5
DCM (0.5% PVA)b 1320 0.44 6.1 q

Ethyl acetate 902 0.50 6.5 x

aDichloromethane.
bComputational fluid dynamics simulation [12].
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FIG. 2. (a) Droplet diameter D versus shear rate dv
dz for all fluid

systems. (b) Collapse of scaled droplet size ð1=kÞD=D0 as a
function of Ca, with k calculated from Eq. (3). The collapsed
experimental data fall roughly 20% lower than the force-balance
prediction (solid line), comparable to results from computational
fluid dynamics (q). See Table I for symbol definitions.
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FIG. 1. Dripping and jetting at various We for Ca ¼ 8� 10�4

and OhDP ¼ 4� 10�2, variables defined in text. (a) Cartoon
representation of the XME process, where droplets of DP are
torn from an orifice by a simple shear flow in the CP. At low DP
flow rates, monodisperse drops form and break off near the pore
(b)–(d); scale bar ¼ 500 �m. As the DP flow is increased, the
first droplets are the same size but move away from the pore
prior to snap-off, forming satellite drops (e)–(g). Eventually, the
fluid neck lengthens further and droplet sizes decrease (h)–(j).
Ultimately, a bent fluid jet breaks into droplets, exhibiting period
doubling (k)–(m).
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Equation (1) can be rearranged as

�2
CPv

21D2

�2
CP

¼ Re2p ¼ 8

Cd

�CPD0�

�2
CP

¼ 8

Cd

Oh�2
CP ; (2)

where we have introduced the CP Ohnesorge number
OhCP ¼ �CP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�CPD0�
p

, which is a ratio of viscous and
capillary time scales. Solving Eq. (2) for the droplet di-
ameter is not trivial since Rep andCd depend onD. Careful

examination of (2) reveals that Rep at snap-off is indepen-

dent of Ca and a function only of material properties and
the pore size. Substituting the approximation v1 ¼ 1

2D
dv
dz

and rearranging dimensionless groups yields

D=D0 ¼ fð32=CdÞ1=4Oh1=2CP gCa�1=2 ¼ kCa�1=2; (3)

where we have introduced k for the prefactor in braces.
The parameter k is nearly independent of Ca and depends
almost entirely on CP properties, with the only DP con-
tribution coming from the viscosity ratio �. Because
of the small exponents on Cd and OhCP, k varies little
over a wide variety of fluid-fluid systems. This corresponds
to the earlier mentioned square root scaling with shear rate,
as Ca / dv

dz .

For creeping flows Rep < 1, Eq. (3) can be solved by

substituting the Hadamard and Rybczynski relation Cd ¼
½8ð3�þ 2Þ=ð1þ �Þ�Re�1

p [14], which was derived for liq-

uid spheres in translational motion (in the absence of a
wall), canceling OhCP:

D

D0

¼
�

2�þ 2

3�þ 2

�

1=2
Ca�1=2: (4)

Thus, for small pores and slow flows, we can derive an
exact force-balance expression for D=D0. The Rep in our

experiments, however, ranges from 2< Rep < 150, so we

solve Eq. (3) iteratively using an expression for Cd given
by Saboni and Alexandrova [14] appropriate for our inter-
mediate Rep case, which amounts to a 35% correction in

the drop diameter for the highest Rep. Moreover, we

compute the shear rate from our measured volumetric
flow rate QCP, using an analytical solution by White [15],
to derive the expression dv

dz ¼ 9:7QCP=H
1:67W1:33.

Figure 2(b) shows the Ca-dependent droplet size data,
rescaled as ð1=kÞD=D0. If our force balance were exact, the

data would fall along the line ð1=kÞD=D0 ¼ Ca�1=2. This
procedure does collapse the droplet size data, with a resid-
ual spread in normalized drop sizes of about 10% across all
of the fluid systems studied. The collapsed data, however,
fall systematically below the expected curve by about 20%.
To investigate this discrepancy, we simulated the XME
process using computational fluid dynamics [12,16]. The
simulation results, also plotted in Fig. 2(b) with the symbol
q, show excellent agreement with the experimental find-
ings. Thus, the discrepancy is presumed due to the simpli-
fying assumptions made in the force balance, e.g.,
neglecting the hydrodynamic effect of the membrane
[17], assuming that the drag force acts perfectly antipar-

allel to the interfacial tension force, or neglecting neck
effects similar to those in the dripping faucet [18]. To
predict the XME droplet size a priori, one should use a
value about 80% of that predicted by Eq. (3).
Next we construct phase diagrams that delimit where

dripping and jetting occur as a function of We and Ca,
shown in Figs. 3(a) and 3(c). We define jetting as occurring
when the length of the neck Ln at snap-off exceeds the
droplet diameter: Ln=D> 1, which correlates with large
changes in D=D0 over the range of Ca studied. A similar
criterion is used in the dripping faucet literature [19]. At
sufficiently low We and Ca, dripping is always observed,
and, as either is increased, the behavior will eventually
transition to jetting. Qualitatively, these phase diagrams
exhibit the same form as those for coaxial liquid streams
[5] and dripping faucets [20], at least when Ca is substi-
tuted for the Bond number Bo [11] in the latter case. In
retrospect, one could have anticipated that jetting will
occur whenever the force causing surface extension ex-
ceeds that causing surface contraction. This will happen
independent of whether that force comes from the kinetic
energy of the DP, the drag from the flowing CP, or gravity.
The transition, however, does not occur at the same loca-
tion in Ca-We space for all fluid systems; rather, it is also
controlled by the DP Ohnesorge number OhDP ¼
�DP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�DPD0�
p

. Figure 3(b) shows how the transition
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FIG. 3. Dripping to jetting phase behavior as a function of We,
Ca, and OhDP. Dripping is indicated by open symbols, jetting by
filled symbols. In (a) and (c), which plot the same region of
Ca-We space at different OhDP, jetting is always seen at suffi-
ciently high values of either We or Ca. The transition curve,
shown by the solid lines, is a function of OhDP and moves
downward as OhDP is increased. In (b), viewing the data in
OhDP-We space highlights the OhDP dependence (at low Ca). In
(d), the surface separating dripping and jetting regimes, based on
Eq. (5), is adapted from Refs. [19,20]. Jetting can also be
observed below this surface if the predicted droplet size is
D=D0 < 2 (not shown). See Table I for symbol definitions.
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varies in We-OhDP space at low Ca, and again we find
remarkable similarity to what has been observed in the
dripping faucet geometry [19].

In the dripping faucet, the separatrix between dripping
and jetting has been determined. Clanet and Lasheras
derived an analytical expression to describe the dripping-
jetting transition inWe-Bo space whenOhDP ! 0 [20]. For
finite OhDP, their expression quantitatively describes our
low and high OhDP data when their We and Bo are re-
placed by a rescaled We and Ca, respectively, as shown
by the solid lines in Figs. 3(a) and 3(c). Similarly,
Ambravaneswaran et al. generated a phase diagram in
We-OhDP space at fixed Bo through numerical simulations
[19]; their data are reasonably well described by a two-
segment piecewise power law in OhDP (corresponding to
the inviscid and finite �DP limits). Again, this expression
describes our data when OhDP is rescaled; the solid line in
Fig. 3(b) shows this result. We find that the product of these
two functions (with rescaled Ca and OhDP) describes our
dripping-jetting transition surface in Ca-OhDP-We space:

We ¼ ðc1Oh��
DP Þf1þ c2Ca

2 � ½ð1þ c2Ca
2Þ2 � 1�1=2g2;

(5)

where c2 ¼ 860, and c1 ¼ 0:10 and � ¼ 0:89 for OhDP �
0:03, or c1 ¼ 2:27 ¼ ð0:10Þð0:03Þ�0:89 and � ¼ 0 for
OhDP < 0:03, as determined by least squares minimization.
This surface is plotted in Fig. 3(d).

We also observe another dripping to jetting transition
mechanism. Even at small Ca and We, under conditions
where Eq. (3) predicts droplet sizes below the Rayleigh
limit D=D0 	 2, dripping gives way to a jet running tan-
gent to the membrane, without apparently wetting it. In this
case, the jet breaks up downstream to yield droplets of size
D=D0 	 2. This condition resembles operating conditions
that prevail during emulsification in T junctions [7]. Taken
with the preceding result, the (Ca,OhDP, We) triple appears
sufficient to determine whether dripping or jetting will
occur during any XME process.

Dripping, jetting, and the transition between them show
remarkably similar characteristics in radically different
geometries. Indeed, we were even able to adapt and ana-
lytically extend functional forms derived for the transition
in faucets to the XME geometry with simple rescaling of
the groups. Less surprisingly, the geometric details influ-
ence the relationship between droplet size and the relevant
dimensionless groups. In the cross-flow membrane geome-
try as in the others, a force balance suffices for a precise
prediction of droplet size as a function of process condi-
tions. It seems likely that such relationships prevail in other
microfluidic geometries as well. It remains unknown to
what extent the lack of axisymmetry in our geometry
affects the hydrodynamic singularity at the moment of

snap-off [21] or how the process is modified by non-
Newtonian fluid behaviors such as extensional elasticity
[22].
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